The Fatou property in p-convex Banach lattices
نویسندگان
چکیده
منابع مشابه
Uniform Kadec-Klee Property in Banach Lattices
We prove that a Banach lattice X which does not contain the ln ∞uniformly has an equivalent norm which is uniformly Kadec-Klee for a natural topology τ on X. In case the Banach lattice is purely atomic, the topology τ is the coordinatewise convergence topology. 1980 Mathematics Subject Classification: Primary 46B03, 46B42.
متن کاملBanach lattices with weak Dunford-Pettis property
We introduce and study the class of weak almost Dunford-Pettis operators. As an application, we characterize Banach lattices with the weak Dunford-Pettis property. Also, we establish some sufficient conditions for which each weak almost Dunford-Pettis operator is weak Dunford-Pettis. Finally, we derive some interesting results. Keywords—eak almost Dunford-Pettis operator, almost DunfordPettis o...
متن کاملPositivity preserving forms have the Fatou property
If (un)n∈IN is a sequence in L2(E; m) converging m-almost everywhere to u, then Fatou’s lemma says that (u, u)L2 ≤ lim infn(un, un)L2 , where we set (u, u)L2 = ∞ if u 6∈ L2(E; m). The corresponding result, where a Dirichlet form replaces the inner product, was used by Silverstein [5; Lemma 1.7] and by Fukushima, Oshima, and Takeda [2; Theorem 1.5.2] to define extended Dirichlet space and study ...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملSome results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.04.086